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SUMMARY

This paper describes the implementation and performances of a parallel solver for the direct numerical
simulation of the three-dimensional and time-dependent Navier–Stokes equations on distributed-
memory, massively parallel computers. The feasibility of this approach to study Marangoni flow
instability in half zone liquid bridges is examined. The results indicate that the incompressible, non-linear
Navier–Stokes problem, governing the Marangoni flows behavior, can effectively be parallelized on a
distributed memory parallel machine by remapping the distributed data structure. The numerical code is
based on a three-dimensional Simplified Marker and Cell (SMAC) primitive variable method applied to
a staggered finite difference grid. Using this method, the problem is split into two problems, one
parabolic and the other elliptic A parallel algorithm, explicit in time, is utilized to solve the parabolic
equations. A parallel multisplitting kernel is introduced for the solution of the pseudo pressure elliptic
equation, representing the most time-consuming part of the algorithm. A grid-partition strategy is used
in the parallel implementations of both the parabolic equations and the multisplitting elliptic kernel. A
Message Passing Interface (MPI) is coded for the boundary conditions; this protocol is portable to
different systems supporting this interface for interprocessor communications. Numerical experiments
illustrate good numerical properties and parallel efficiency. In particular, good scalability on a large
number of processors can be achieved as long as the granularity of the parallel application is not too
small. However, increasing the number of processors, the Speed-Up is ever smaller than the ideal linear
Speed-Up. The communication timings indicate that complex practical calculations, such as the solutions
of the Navier–Stokes equations for the numerical simulation of the instability of Marangoni flows, can
be expected to run on a massively parallel machine with good efficiency. Copyright © 1999 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The floating zone method is an important technique to produce high quality crystals material.
By this containerless method, semiconductor crystals can be grown with less contamination,
more homogeneity and higher purity. During recent years, floating zone crystal growth in the
microgravity environment offered by space laboratories has been proposed and float-zone
related experiments have been performed, in order to grow larger and better crystals, since
compositional inhomogeneities caused by buoyancy-driven convection can be avoided in low
gravity conditions. However, even in the absence of gravity, Marangoni convection is still
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present due to surface tension gradients at the liquid–liquid or liquid–gas interfaces. Experi-
ments have shown that for sufficiently small values of the Marangoni number, the convection
in the liquid column is laminar, steady and axisymmetrical, but when the Marangoni number
exceeds certain critical values depending on the Prandtl number of the liquid, on the geometry
and on the boundary conditions, the liquid motion can undergo a transition to a three-
dimensional complex flow pattern [1–3].

Numerical simulations are a decisive tool to reduce the number of expensive experiments, to
plan and improve the experimental set-ups and to optimize new production techniques.

Initially, the Marangoni convection in axisymmetric liquid bridges was investigated numeri-
cally [4–8] in order to study the bifurcations from a steady to a time-dependent axisymmetric
state (i.e. the instability of steady thermocapillary convection) under the constraint of axial
symmetry of the flow. Two-dimensional methods are in fact convenient to use due to their
efficiency in memory, computing time and costs. They can be reliable for symmetrical
geometries and boundary conditions, or if the third dimension is assumed to be infinitely
extended. However, if the flow is actually three-dimensional, vital information is lost. In
particular, real experiments on Marangoni flow instability show that the supercritical flow and
temperature fields are three-dimensional, and this peculiar information is lost in 2D models.

Linear or energy stability theories [9–15] provided important information on the critical
conditions for the onset of instability (in the ideal case of steady basic states) and on the flow
field organization in the neighborhood of the transition point from axisymmetric to three-
dimensional flow; unfortunately these theories do not predict either the real unsteady condi-
tions corresponding to the experimental procedure or the non-linear behavior of the flow far
from the bifurcation point.

In recent years the availability of supercomputers and the development of efficient numerical
methods provided the possibility to study the problem by direct numerical solution of the
three-dimensional Navier–Stokes equations. However, only a few papers have been published
on this subject [16–20] due to the fact that enormous speed and memory requirements are
necessary. This is particularly true for large Prandtl number liquids and large Marangoni
numbers, due to the presence of very thin boundary layers that require a large number of
computational grid points and, consequently, a large number of unknown variables. In fact,
coarse grids cannot be used because a low resolution does not permit them to ‘capture’ the
instabilities of the Marangoni flow. For these reasons, grid quality and computation speed are
‘critical factors’ for the study of these problems.

Two possibilities exist for achieving high computational speeds: advanced computers with
their intrinsic physical limitations, and parallel computations, that increase the computational
speed as the number of processors is increased.

The objective of this work is to develop a parallel and scalable flow solver code to solve a
variety of non-smooth problems related to the instability of Marangoni flow in liquid bridges.
The Navier–Stokes algorithm must be numerically stable, physically robust and computation-
ally efficient. Previous results [19,20] indicate that a Simplified Marker and Cell method
(SMAC) can be successfully utilized for simulations of complex Marangoni flows. The
parallelization of this algorithm can only be performed by an articulate numerical solution
procedure, in order to optimize simultaneously the numerical scheme, the grid generation and
the domain decomposition related to the parallel methods.

In particular, the numerical algorithm developed in the present work has been optimized for
both vector and parallel computations (see Section 3). However the vectorial and the parallel
performances have been tested independently, since the available computers (Convex 3860 and
Cray T3E) are a vector single-processor and a scalar multiprocessor machine respectively.
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Whenever vectorial and massively parallel computers were available, both the options would
be possible.

The paper runs as follows: Sections 2 and 3 are related to the governing equations and to
the numerical solution method respectively; Section 4 describes the vectorization and the
parallel implementation of the algorithm. In particular, different approaches have been
considered for the parabolic problem (4.2, 4.3, 4.4) and for the elliptic pressure problem (4.4).
The general code organization is presented in Section 5. The results are illustrated in Section
6.

2. THE GOVERNING EQUATIONS AND THE BOUNDARY CONDITIONS

The geometry of the problem is shown in Figure 1. A cylindrical liquid bridge of length L and
diameter D is held between two coaxial disks with different temperatures. The upper disk is
kept at the temperature Th higher than the temperature Tc of the lower cold disk. The imposed
temperature difference is denoted by DT (Th=Tc+DT). The geometrical aspect ratio of the
bridge is defined as A=L/D. The bridge is bounded by a cylindrical and undeformable
liquid–gas interface with a surface tension exhibiting a linear decreasing dependence on the
temperature. The field equations are the continuity, Navier–Stokes and energy equations, that
in non-dimensional conservative form read [18–20]

96 ·V6 =0 (1a)

(V6
(t

= −96 p−96 · [V6 V6 ]+Pr 96 2V6 (1b)

(T
(t

= −96 · [V6 T ]+92T (1c)

where V, p and T are the non-dimensional velocity, pressure and temperature, Pr is the Prandtl
number, defined by Pr=y/a (y is the kinematic viscosity and a the thermal diffusivity).

The geometry of the problem suggests to use the cylindrical co-ordinates system (z, r, 8) in
order to easily impose the boundary conditions (the velocity components are denoted as u, 6
and V8 respectively). Thus, the equations read
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Figure 1. Scheme of the liquid bridge.
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The initial conditions are

t=0: V(z, r, 8)=T(z, r, 8)=0 (3)

i.e. the liquid is motionless and at ambient temperature.
For t\0, the boundary conditions are the non-slip conditions and the condition of

prescribed temperatures on the circular disks, the kinematic condition of stream surface (zero
normal velocity), the Marangoni conditions (shear stress balance) and the adiabatic condition
on the cylindrical interface:

on the cold disk 05r5R/L ; 05852p

V(z=0, r, 8, t)=0; T(z=0, r, 8, t)=0 (4)

on the hot disk 05r5R/L ; 05852p

V(z=1, r, 8, t)=0; T(z=1, r, 8, t)=1 (5)

on the cylindrical free surface 05z51; 05852p

6(z, r=R/L, 8, t)=0 (6a)

(u
(r

(z, r=R/L, 8, t)= −Ma
(T
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(z, r=R/L, 8, t) (6b)

r
(V8

(r
(z, r=R/L, 8, t)−V8(z, r=R/L, 8, t)= −Ma

(T
(8

(z, r=R/L, 8, t) (6c)

(T
(r

(z, r=R/L, 8, t)=0 (6d)

where the reference Marangoni number Ma is defined as Ma=sT(DT) L/ma.

3. THE NUMERICAL METHOD

The equations (2a–e) and the initial and boundary conditions (3–6) were solved numerically
in cylindrical co-ordinates in primitive variables by a control volume method. The domain was
discretized with a non-uniform but structured axisymmetric mesh and the flow field variables
defined over a staggered grid. The axial velocity component u is staggered in axial direction
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Figure 2. Collocation of the variables on the computational grid.

with respect to the point in which temperature and pressure are computed. In a similar way,
the radial and azimuthal velocity components are staggered in radial and azimuthal directions
respectively (see Figure 2).

The finite volume approach relies directly on the application of the integral form of balance
laws. Thus, the conservation laws have been written for an arbitrary spatial domain V
bounded by a surface #V. Since the collocation of the variables on the grid is staggered, each
variable is characterized by a different control volume; see Figure 3 where the control volume
Vu for the axial velocity, V6 for the radial velocity and Vp for the pressure, the temperature and
the azimuthal velocity are shown in a generic meridian plane (the control volumes for p, T and
V8 are the same). Integrating over the generic control volume and using the Gauss theorem to
transform volume integrals in surface integrals, the equations read&

(Vp

V6 · i6 dS=0 (7a)

&
Vu

(u
(t

dV= −
&
(Vu

[uV6 ] · i6 dS+Pr
&
(Vu

96 u · i6 dS−
&

Vu

(p

(z
dV (7b)

&
V6

(6

(t
dV= −

&
(V6

[6V6 ] · i6 dS+Pr
&
(V6

96 6 · i6 dS−
&

V6

(p

(r
dV (7c)

&
VV

8

(V8

(t
dV= −

&
(VV

8

[V8V6 ] · i6 dS+Pr
&
(VV

8

96 V8 · i6 dS−
&

VV
8

1
r
(p

(8
dV (7d)

&
VT

(T
(t

dV= −
&
(VT

[V6 T ] · i6 dS+
&
(VT

96 T · i dS (7e)

where i6 is the orthogonal unit vector oriented outside the control surface.
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For high aspect ratios the computational points have been distributed almost uniformly in
the computational domain. For low aspect ratios, for the efficient numerical solution of the
equations in the presence of the Marangoni boundary layer, the grid has been clustered near
the free surface of the liquid bridge (Figure 4).

When parallel computation is involved, explicit schemes are highly efficient and easy to
implement on parallel machines. For this reason, a time-explicit SMAC has been adopted (see
also Fletcher [21] and Hirsch [22]).

Forward differences in time were used to discretize the time-dependent derivative in the
equations (1b) and (1c), obtaining

V6 n+1=V6 n+Dt
1
V
�

−
&
(V

[V6 nV6 n] · i6 dS+Pr
&
(V

[96 V6 n] · i6 dS
n

−Dt
1
V
&
(V

9pn · i dS (8)

Figure 3. Control volumes adopted for the different variables.
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Figure 4. Computational grids used for the numerical simulations.

Tn+1=Tn+Dt
1
V
�

−
&
(V

[V6 nTn] · i6 dS+
&
(V

[96 Tn]·i6 dS
n

(9)

The SMAC method proceeds as a type of fractional step method by first writing a modified
momentum equation and then updating the velocity field using the computed pressure to
account for the continuity (1a). More precisely, at each time step, an intermediate velocity field
is found without the knowledge of the correct pressure field, and therefore no incompressibility
condition is enforced

V6 *=V6 n+Dt
1
V
�

−
&
(V

[V6 nV6 n] · i6 dS+Pr
&
(V

[96 V6 n] · i6 dS
n

(10)

The intermediate velocity field is then corrected by a second step in which we solve a pressure
equation and then use the computed pressure to produce a divergence-free velocity field. The
control volume corresponds to a polyhedron (Figure 2(c)). The surface integrals in equations
(9) and (10) (representing the convective and diffusive fluxes across the faces of the control
volume) have been computed splitting the integrals in the six contributions related to the six
faces of the polyhedron (see Figure 5; N, S, W, E, L and R represent respectively the ‘North’
and the ‘South’ directions for the radial coordinate, the ‘West’ and the ‘East’ directions for the
axial coordinate and the ‘Left’ and ‘Right’ directions for the azimuthal coordinate).
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For any variable f involved in the computation (T or V6 ) the overall convective flux across
the frontier of the control volume is computed as&

(Vf

[V6 f ] · i6 dS=FS+FW+FN+FE+FL+FR (11)

And the diffusive flux as&
(Vf

96 f · i6 dS=FS+FW+FN+FE+FL+FR (12)

Each face contribution F to the overall diffusive flux is computed simply evaluating the
derivative orthogonal to the faces of the polyhedron.

The convective fluxes are computed using interpolation to ‘reconstruct’ the value of the
velocity and of the convected variable (temperature or momentum) on the faces of the control
volume.

In both cases it is necessary to know the distribution of the variables in a certain
neighborhood of the considered control volume. In the present work due to the stencil used for
the evaluation of the derivatives and to the nature of the interpolations used to compute the
physical quantities on the faces of the polyhedron, this neighborhood only involves the
adjacent control volumes.

The pressure is computed by solving a Poisson equation resulting from the divergence of the
momentum equation with the help of the continuity equation:

92pn=
1
Dt

96 ·V6 *

that in integral form becomes&
(Vp

96 p · i6 dS=
1
Dt

&
(Vp

V6 * · i6 dS (13)

The Poisson equation is solved with a Successive Over Relaxation (SOR) iterative method.
The velocity field is finally updated using the computed pressure field to account for

continuity

V6 n+1=V6 *−Dt96 pn (14)

The temperature field at time (n+1) is obtained from eq. (9) after the calculation of the
velocity.

Figure 5. 3D sketch of the generic control volume.
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Figure 6. Speed-Up function obtained on the Convex 3860 Supercomputer.

In conclusion, with the SMAC method, the problem has been split in four scalar parabolic
equations (three from equation (10) plus the energy equation (9)) and one elliptic equation
(13).

4. PARALLEL/VECTOR STRATEGY

Two possible strategies can be pursued to achieve super-calculus: (1) vectorization, in which a
large amount of data (arranged in arrays) can be handled at the same time by special vector
registers and a special unit (pipeline); (2) true parallel computation when different instructions
may be executed in parallel by several processors.

4.1. Vectorization

A higher level of parallelism is found in vector processors, where the use of special hardware
(vector register) may permit parallelizing a computational loop over a segment (of length
matching that of the vector registers) of an array. It must be pointed out that vector processing
is only applicable to those loops where the data to be processed in successive iterations do not
carry any dependency (as it would be the case for a loop where one iteration affects the input
data of another one).

In this work, using an explicit in time numerical method, a full (100%) vectorization of the
four parabolic equations involved in the computation was obtained. When the numerical
procedure is explicit in time, in fact, the variables at the time step n+1 can be computed as
functions of the variables at the time step n (the variables at n+1 depend exclusively on the
variables at the previous time step and do not carry any dependency among them).

For the elliptic Poisson equation, the full vectorization was not possible (the compiler
reported 72% for the subroutine used as solver of this equation) since the SOR iterative
algorithm introduces strong dependency among data to be processed.

On a Convex 3880 vectorial supercomputer the code has reached a ‘vector Speed-Up’
(defined as the ratio of the scalar CPU time over the vector CPU time) between 2 and 4 (see
Figure 6). In particular this Speed-Up is a function of the number of variables involved in the
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computation (i.e. of the number of grid points). Figure 6 shows that when the number of
variables (proportional to the number of grid points) is increased, the vector Speed-Up
increases. When the dimensions of the arrays containing the variables of the problem increase,
the calculus can take a better advantage of the vector hardware and in particular of the vector
registers and of the pipeline mathematical unit [23].

A more detailed explanation of this behavior can be given describing briefly the structure of
a vector pipeline unit.

A pipeline unit can be considered as an ‘assembly line’ characterized by several working
stations where the variables to be processed ‘flow’ continuously. It is a sequence of elaboration
stages where the stages are sub-units each executing a different sub-operation on the variables
that move in the pipe.

Typically, an arithmetical operation on two scalars requires more sub-operations; each
sub-operation needs a clock period; the global time required for the operation is the sum of the
clock-periods for the different sub-operations in which the arithmetical operation considered
can be split.

In a pipe, the variables (stored in a vector array) move continuously spending a clock period
at each station so that the time required to execute the operation on the entire vector is smaller
than the sum of the times that would be required to execute the same operation on all the
variables stored in the vector array considered separately.

If the pipe consists of q stages, and the vector array to be processed contains n scalars, the
pipe needs q+ (n−1) clock periods to complete the operation on the entire vector: where the
first q periods are required to complete the operation on the first scalar of the vector array.
Without pipelining the same global number of operations can be executed in (n ·q) periods. On
the basis of this analysis it is possible to give an estimation of the vector Speed-Up as

Sv=
nq

q+n−1
(15)

In the present work, the variables involved in the computations have been stored in 3D arrays
having dimensions Nz, Nr, N8 (the number of data items in the axial, radial and azimuthal
directions respectively). The length n of the vector array processed by the pipeline unit is
defined by the inner loop of the triple structure loop used to handle the entire 3D array of the
variables (n is 20 for a grid 20×20×20 and 40 for a grid 40×40×40).

The Sv function increases when n is increased and this explains the behavior shown in Figure
6.

4.2. Domain decomposition and data mapping

True parallel processors have the capability of executing different instruction streams (tasks) in
parallel, and that of permitting communication between tasks.

In these computers (we refer to distributed memory systems NORMA: No Remote Memory
access) the global algorithm has to be split into several sub-kernels [24–27]. Each processor
solves a task and cannot ‘see’ directly the variables stored in the local memory of the other
processors solving the other tasks. The different nodes have to communicate via special
messages using an ‘internode communication network’ (Message Passing philosophy).

This Section is dedicated to the description of the parallel algorithm used for the solution of
the parabolic equations (9) and (10) on the Cray T3E massively parallel supercomputer. The
data distribution among the various processors of a parallel machine is a key factor in the
efficiency of a parallel implementation. For many scientific applications, the optimal data
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distribution is not obvious and requires experimentation. The parallelization approach em-
ployed in the present work is based on domain decomposition. The computational domain is
split into p sub-blocks (or sub-domains) without overlapping neighboring parts in a manner
that provides a complete partition [24]. Each sub-domain is topologically equivalent to a
simple domain such as a cylinder: this splitting comes from the grid-generation process.
Hereafter p denotes the number of processors available on the parallel machine, and
Nz, Nr, N8 denote the number of data items (i.e. grid points) in the axial, radial and azimuthal
directions. The three dimensional data are partitioned into Nz two dimensional planes of
NrN8 data items each. The first Nz/p planes are mapped to processor P0, the next Nz/p planes
are mapped to processor P1 and so on. An example of this mapping is shown in Figure 7 (for
p=4).

In this way the solution domain is split into a connected set of axisymmetric sub-blocks in
three dimensional space. Each block has at most two surrounding blocks, although some at
physical boundaries have fewer neighbors. In fact, interior blocks have two neighboring
blocks, whereas those at the physical boundary only have one neighbor.

Since the domain is partitioned in equal sub-domains, each processor has exactly the same
number of grid points. The parabolic equations (9) and (10) are solved within each sub-do-
main. Since an explicit in-time scheme is employed, at each time step each sub-domain is
completely independent of its surrounding (the variables computed at the step n+1 are
completely uncoupled since they depend exclusively on the variables at the previous time step),
parallelism simply being achieved by introducing a new boundary condition, denoted as
inter-block or inter-domain boundary condition. Each processor works with one of these
sub-blocks, and exchanges data across the boundaries of the sub-blocks. The entire application
can be imagined as a number of kernels with different data-distribution requirements, which
necessitates data movement between the different kernels.

4.3. Interprocessor communication and synchronization

To ensure a correct implementation of the numerical algorithm on the partitioned grid, data
exchange is necessary close to the ‘partition boundaries’ of each subgrid local to a certain
processor.

Each processor contains a cylindrical subgrid surrounded by some ‘ghost grid points’ which
are duplicates of grid points contained in other processors, as depicted in Figure 8 where the
computational mesh in a generic meridian plane is shown. In addition to the block of data
owned by each processor, there are two surrounding layers of ‘ghost’ points. These ghost
points are updated by the Message-Passing phase of the calculation, and provide data
continuity from the neighbor sub-block for the computation.

An example of the parallel numerical procedure and of the utilization of the ghost points
is shown in Figure 8. Suppose to compute any variable f (momentum or temperature) at
the time step tn+1 in the ‘internal’ point A as a function of the solution at the previous
step tn.

The processor (i) is able to compute the diffusive and convective fluxes across the faces of
the control volume containing the grid point A, since the values related to the grid points
adjacent to this control volume are stored in its local memory.

Similarly, at the ‘boundary’ point B, the processor is able to compute the diffusive and
convective fluxes across the faces N, S and E but it ‘cannot’ compute directly these fluxes
across the face W, since external values are not stored into its local memory, but they are
stored in the local memory of the processor (i−1). Therefore, the processor (i−1) has to
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‘communicate’ these values to (i) to complete its local computations. These value are ‘received’
by the processor (i) and ‘located’ in a ‘geometrical extension’ of its sub-domain represented by
the ghost cells.

Figure 7. (a) Computational domain and (b) grid partition.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 911–935 (1999)
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Figure 8. Data exchanges between neighboring processors (the data lying in partition boundary-layers in each
processor are sent out which is stored in the blocks for ghost grid points in the neighboring processors).

The number of ghost points on each partition boundary of the subgrid depends on the
numerical algorithm. For the SMAC method using a standard Laplacian stencil, one ghost
grid point on each side is needed for the local subgrid at each level. Therefore, in the
Navier–Stokes flow solver, it was allocated storage for one ghost grid point for each sub-grid
on each partition boundary.

The code is implemented with an extremely simple message-passing model, consisting of
only send and recei6e (see Figure 8). The simplicity of this model implies easy portability. The
message-passing is written using the Message Passing Interface (MPI [28,29]), ensuring
portability.

The sending data contains boundary information that is placed into the ghost locations of
the neighboring processors. After data exchanges are performed, a new computation step can
start. Each processor, therefore, only needs to know its nearest surrounding processors on the
logical processor mesh.

Each processor computes the data of its sub-block independent of the others, then exchanges
data with its neighboring sub-domains. The exchange consists of sending messages to each of
the neighbor blocks, where the size of each message is proportional to the number of grid
points on the common face. The processor then waits to receive the corresponding messages
from the neighbor processors, and when these are received, the cycle starts again with the
computation phase.

The code runs in loosely synchronous cycles of computation followed by data exchange
across the faces of the sub-blocks.

In order to optimize the synchronization, the subroutines for the management of parallel
events, provided by the MPI FORTRAN library (mpi–barrier), have been utilized.

4.4. The elliptic equation and the multisplitting technique

When the grid partition strategy is employed, the code consists of a number of computation-
ally intensive kernels. Dependent upon the equations (parabolic or elliptic), some of these
kernels are executed locally on a single processor and the rest are executed globally across the
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processors. The kernels that are executed globally require strong communication between
processors.

The efficiency of the numerical solution of the pseudo-pressure equation introduced by the
SMAC method is of paramount importance in unsteady three-dimensional, incompressible
flow simulations. The pressure solution demands, in fact, at least 50–70% of the CPU time
depending on the grid size.

In the ‘serial’ version of the code an iterative SOR method was adopted for the solution of
the linear elliptic equation. The disadvantage is that a fully SOR or (Gauss–Seidel) method
involves the solution of linear system of equations over the whole solution domain and is
therefore, on a parallel machine, much more computationally intensive than explicit steps for
parabolic equations.

Over the years many solution methods have been proposed for linear problems. In
particular, much attention has recently been paid to iterative ‘splitting’ methods, that general-
ize the matrix splitting methods (e.g. Jacobi, Gauss–Seidel and SOR) for solving systems of
linear equations. O’Leary and White [30] have proposed a parallel ‘multisplitting’ iterative
method using different splittings of the coefficient matrix. The results obtained from the
splitting iterations are combined to define the multisplitting cycles. Thus, the method may be
effectively implemented on multiprocessors.

This technique has been employed to solve the present problem; the system matrix has been
decomposed by columns into p blocks. The global problem is then replaced by a sequence of
local problems to be solved in parallel.

This approach has great potential for parallelism (it runs as a convergence accelerator for
the parallel code), is essentially architecture-independent and uses much serial expertise. In
fact, the multisplitting philosophy can be regarded as a domain decomposition algorithm, in
which each CPU only provides an updated solution for a portion of the domain.

Specifically, the pressure variable domain p�Rk (where k is the number of grid points, i.e.
k=NzNrN8) is partitioned according to p(p1, p2, . . . , pp) where each subdomain has pi�Rki

and �i=1
p ki=k without overlap of subdomains [31].

The solution pi is then the solution with updated values only on the i portion of the
partition. The basic algorithm using p processors follows for all processes i, 15 i5p :

l....communicate values near partition boundaries to the neighboring processors.
2....calculate the pseudo-pressure p over each subdomain using SOR.
3....synchronization.
4....test for convergence locally.
5....communicate convergence result to all processors.
The method can be seen as a Jacobi method from a global point of view (each processor

does not ‘see’ the values computed by the others processors until each iterative step has been
completed) and as a SOR method from a ‘local’ point of view (each processor uses a SOR
method over the variables stored in its local memory). Within the ‘local’ iterations, the system
of linear equations is solved neglecting coupling matrix elements related to grid points in
different blocks. This means that each iterative step is performed within a single processor with
no communication to other processors. Only after the iterative step has been completed is there
communication with other processors.

Testing for convergence can be carried out either locally or globally. In the former case it is
only necessary to share a logical variable with all the other processes. Otherwise the array must
be accumulated and a global check performed. In this paper testing globally has been adopted.
The pseudo-pressure array is accumulated and the convergence check performed by a single
CPU (the ‘Master’) that then communicates the result of the test to the others processors
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(slaves). A master–slave model has been employed because it requires minor modification of
the original test employed in the serial version of the code for convergence.

Convergence results show that ‘extra’ iterations are needed by the multisplitting scheme with
respect to the ‘serial’ version of the SOR method. The number of iterations required by the
parallel SOR method described above is in fact larger than that required by the serial version;
however it is always smaller than that required by the serial Jacobi method (according to this
result and to the fact that the multisplitting method can be seen as a Jacobi method from a
global point of view and as a SOR method from a local point of view, it follows that this
method can be considered a hybrid technique).

5. PROGRAM ORGANIZATION

The code has been written entirely in FORTRAN 90, making full use of the advanced concepts
provided by the language, such as dynamic data structures and pointers. Thus, a much more
compact, well-structured, and maintainable code has been obtained. Storage for all grid
variables is allocated at run time. This strategy of dynamic memory allocation offers a greater
flexibility in data structure manipulations and more efficient use of memory than a static
memory allocation, and the user is also alleviated from the burden of calculating storage
requirements. After initialization of the problem to be solved and some algorithm parameters,
a preprocessing routine is called. The preprocessing routine constructs the set of nested grids
and the corresponding set of logical processor meshes. The numerical solution proceeds in
three major stages:

1. Topology: perform domain decomposition of the solution domain.
2. Grid generation: create a high-quality grid within each domain. Spatial discretization

reduces the Navier–Stokes equations to a set of partial differential equations.
3. Explicit solution: advance explicitly in time by using the SMAC method.

For the stage 3, the combined use of locks and events permits the creation of complex
communication and synchronization patterns:

3a. Solution of the three parabolic momentum equations neglecting the pressure gradient.
3b. Synchronization.
3c. Solution of the elliptic equation (13).
3d. Synchronization.
3e. Update using the computed pressure field to account for continuity (14).
3f. Synchronization.
3g. Solution of the parabolic energy equations.
3h. Synchronization.
Parallelization is performed using FORTRAN extension and special library subroutines

(mpi–send, mpi–recv, mpi–barrier).
When making the effort to parallelize the code, it is of great interest to reduce the

inefficiency, which is defined as 1−p [T(1)/T(p)] where p is the number of processors, T(p) is
the time taken to run on the p processors, and T(1) is the time taken to run on a single
processor (serial version of the code).

The parallel code developed in this work has an inner loop structure of loosely synchronous
cycles of computation and communication between processors whose physical domains are
adjacent. In this case, there are usually two contributions to inefficiency: load–balance
inefficiency and communication inefficiency. Load–balance inefficiency could occur because
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the processors have different amounts of computation to perform, which for the code means
different numbers of grid points. In this case the algorithm in fact runs at the speed of the
processor with the largest number of grid points (the minimum speed). In the present work this
cause of inefficiency has been eliminated by splitting the grid into equal subblocks.

Communication inefficiency arises from the time taken for messages to pass between the
processors In the present case this cause of inefficiency has been reduced in the grid-generation
phase, because the subblocks have reasonably low surface area to volume ratios, so that the
communication inefficiency is low.

6. RESULTS

To test the capability of the code to ‘capture’ the instability of Marangoni flow in cylindrical
liquid bridges, two different liquid bridges have been considered with A=0.6 and A=1.

The Prandtl number is Pr=0.04. The runs have been performed on the Convex 3880/60
Vector computer in ‘serial’ mode and on the Cray T3E massively parallel computer in ‘parallel’
mode in order to compare the results and to validate the parallel method introduced.

Some of the typical results are illustrated in Figures 9–19.
When the basic axisymmetric field becomes unstable, after a short transient a three-dimen-

sional steady flow regime develops (stationary supercritical state). The transition between
subcritical symmetric and supercritical asymmetric state can be determined by the time
temperature and velocity profiles in a well-defined grid point. Before the transition point, the
temperature profiles obtained with 2D and 3D numerical computations are almost coincident.
After the onset of instability the results of the 3D code depart from 2D computations, due to
the symmetry breaking and to the three-dimensional flow field organization (see Figure 9).

On the other hand, the computations indicate that the thermal and flow field organization
in the supercritical state may be very complex, depending on the geometrical aspect ratio of the
liquid bridge (A=L/D).

Figure 9. Temperature in the control point z=0.75, r=0.9/2A, 8=0 for A=1 and Ma=500.
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Figure 10. Azimuthal velocity at z=0.75 for A=1: (a) serial results, (b) parallel (4 CPU) results.

For A=1 and A=0.6, two different modes for three-dimensional supercritical flow pattern
are present. For A=1, in the generic cross-section orthogonal to the liquid bridge axis there
are two azimuthal convective cells (Figure 10) and two thermal spots on the liquid bridge
surface (Figure 14). For A=0.6, the convective cells are four (Figure 15) and there are four
thermal spots on the free surface (two hot and two cold, Figure 19).

For A=1, the supercritical flow appears as an inclined toroidal vortex; for A=0.6 as a
deformed torous.

For A=1, there are two asymmetrical vortex cells in each meridian plane of the liquid
bridge. For A=0.6, the flow field structure is on the whole three-dimensional and depends on
the azimuthal co-ordinate, but in each meridian plane the velocity and temperature are
symmetric.

This behavior is particularly evident in Figures 13 and 18 where the vector plots in a
meridian plane are illustrated for A=1 and A=0.6. For A=1 (Figure 13), one of the two
vortex cells in the section prevails on the other and is extended along the whole axial plane of
the bridge For A=0.6 (Figure 18), the vector plot is symmetric.

The figures carrying (a) represent ‘serial’ results whereas the figures carrying (b) represent
‘parallel’ results (obtained using 4 CPUs).

The numerically determined critical Marangoni number is Mac=85 for A=0.6 and
Mac=125 for A=1.0. The quantitative difference between ‘serial’ and ‘parallel’ results lies
below 1%.

Figure 11. Temperature field at z=0.75 for A=1: (a) serial results, (b) parallel (4 CPU) results.
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Figure 12. Temperature distribution at 8=0 for A=1.

The figures show that the supercritical flow patterns in the cross section obtained from the
‘parallel’ version of the code, appear to be ‘rotated’ with respect to those obtained with the
‘serial’ version.

In the linear stability analyses the process is studied, ‘forcing’ in the model equations ‘small’
disturbances typically represented by a Fourier expansion. The critical Marangoni number is
then computed as the value of the Marangoni number that corresponds to a non-negative
growth rate of the disturbances (above this value the arbitrary imposed small disturbances can
grow and give rise to the bifurcation).

In these analyses the position of the azimuthal extreme depends on the ‘a priori ’ fixed shape
of the functions superimposed on the basic state field as initial conditions for the disturbances.

When the problem related to the bifurcation of the Marangoni flow is solved through direct
numerical solution of the time-dependent and non-linear Navier–Stokes equations, as in the
present work, no a priori known small azimuthal disturbances are superimposed on the
solution. The role of the ‘small distortions’ of the linear stability analyses is played in this case
by the ‘numerical noise’ introduced in the computation by the ‘round-off’ errors of the
memory registers of the computer used for the simulation If the numerical simulation is
performed using a serial (mono-CPU) computer (that has ‘fixed’ memory registers) the
numerical noise is fixed (it works as a ‘fixed’ initial condition for the disturbances) and for this
reason the simulation, when repeated, gives always the same result; if a parallel computer
system is used, the numerical noise is not fixed since it depends on the processors (and related
‘private’ memory registers) that are involved (depending on the availability) in the
computation.

Figure 13. Velocity field at 8=0 for A=1.
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Figure 14. Temperature disturbances on the liquid bridge surface for A=1.

However, an extensive numerical experimentation indicated that the critical parameters of
the transition process (critical Marangoni number, critical azimuthal wave number) and the
amplitude of the distortions are independent of the numerical noise related to the parallel
environment.

7. PARALLEL PERFORMANCES

The Cray T3E supercomputer has 128 DEC Alpha processors (model 21164). The network
topology is 3D Torus (480 Mbyte/sec payload bandwidth through each one of the six torus
directions). The clock cycle is 3.33 nsec. The memory is 16 Mword (64 bits) per Processor (2
Gword global memory) and the peak performance is 76.8 GigaFLOPS.

The parallel performance of an application code is usually judged by two measurements:
Speed-Up and Scaling. Speed-Up is measured by fixing the problem size (or grid size in our
case) and increasing the number of processors used. Scaling is measured by fixing the local
problem size in each processor and increasing the number of processors used.The Speed-Up
parameter is defined as

Figure 15. Azimuthal velocity at z=0.75 for A=0.6: (a) serial results, (b) parallel (4 CPU) results.
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Figure 16. Temperature field at z=0.75 for A=0.6: (a) serial results, (b) parallel (4 CPU) results.

Sp=
T(1)
T(p)

(16)

where T(1) is the time required for the ‘serial’ computation (single CPU) and T(p) is the time
required by the algorithm to perform computations using p parallel processors.

The serial version of the algorithm does not correspond to the parallel one processor
execution of the code since the latter requires additional time for the initialization of the tools
introduced by the compiler for the managing of the multiporcessing environment.

T(p) may be expressed as the sum of the time required for the serial operations (operations
which cannot be executed in parallel mode, e.g. input/output operations) plus the time required
for the ‘true’ computations on each processor Tp and the communication overhead To

T(p)=Ts+Tp+To (17)

Typically Tp and To are combined in a single non-dimensional parameter known as the
communication cost

c=
To

Tp

(18)

The efficiency of the algorithm is defined as

Ep=
Sp

p
(19)

Equation (16) is actually a comparison between the performances of the serial version of the
code and of the parallel program running on p processors. The parallel version takes into
account the additional source code which the programmer may have to insert (typically for

Figure 17. Temperature distribution at 8=0 for A=0.6.
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Figure 18. Velocity field at 8=0 for A=0.6.

synchronizing different tasks and for implementing the required communications between
them) in the serial code in order to obtain parallel operation. Moreover it any takes into
account the additional object code which the compiler may have to insert for managing the
multiprocessing environment (parallel overhead). For these reasons it follows that the Speed-
Up obtained by parallelizing a given code will be lower than p (and consequently the efficiency
will be lower than 1). On the other hand, it can be made very close to p by taking all limiting
factors into account during the design of the code.

Figure 20 shows the Speed-Up function Sp for the present code on the Cray T3E. For a
fixed problem size (i.e. for a fixed grid) Sp increases with the number of processors employed
and for a fixed number of CPUs it increases with the dimension of the problem. Figure 21
shows the corresponding parallel efficiency Ep. Figures 20 and 21 show that the advantages
obtained by parallelism diminish rapidly as the number of processors exceeds some threshold.
This behavior is explained by the fact that the parallel efficiency Ep is largely determined by
the ratio of local computations over interprocessor communications. As the number of
processors increases, for a fixed problem size, the local communication cost and the cost for
global operations will eventually become dominant over the local computation cost after a
certain stage. This high ratio of communication to computation makes the influence of a
further reduction in the local computation very small on the overall cost of running the
application.

For the present code, the best parallel efficiency is achieved on the finest grid (see Figure 21),
where the communication overhead is less important than the large amount of computations.

Indeed, the computational cost is proportional to the number of gridpoints, and the
communication overhead is proportional to the number of gridpoints associated with the

Figure 19. Temperature disturbances on the liquid bridge surface for A=0.6.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 911–935 (1999)



M. LAPPA AND R. SAVINO932

Figure 20. Speed-Up function obtained on the Cray T3E.

boundary of the sub-domains. Thus, the communication cost c=To/Tp of the code is
proportional to the surface area to volume ratio for a processor; and also proportional to the
ratio of the amount of communication per boundary gridpoint, to the amount of work (flops)
per internal gridpoint.

Therefore, the best performances obtained using finest grids (Figures 21 and 22) are
explained by the fact that, for the present algorithm the computation cost Tp scales as
O(Nr ·N8 ·Nz/p), where Nz, Nr and N8 are the number of grid points in the local grid and p
the number of processors used; whereas the communication overhead To scales as O(Nr ·N8).

Figure 21. Efficiency obtained on the Cray T3E.
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Figure 22. Communication cost.

In conclusion, the communication cost c=To/Tp scales as O(p/Nz) as well illustrated in Figure
22.

8. CONCLUSIONS

This paper describes a numerical solution strategy to solve the 3D incompressible Navier–
Stokes equations for the study of three-dimensional Marangoni flows in axisymmetric ge-
ometries on parallel or serial computer systems.

The feasibility of this approach to perform transition studies of Marangoni flow in liquid
bridges on these computers has been stated. The results indicate that the non-linear equations
governing the behavior of Marangoni flows can effectively be parallelized on a distributed-
memory parallel machine by remapping the distributed data structure.

A parallel method for solving the elliptic Navier–Stokes equations for incompressible fluid
flows has been presented. A parallel, explicit in time algorithm for solving the parabolic
equations and a parallel multisplitting elliptic kernel are described.

Numerical experiments and parallel performance measurements have been presented to
illustrate the numerical properties and the parallel efficiency.

The parallel efficiency tests on the Cray T3E systems show that good scalability on a large
number of processors can be achieved for both the multisplitting elliptic routine and the
SMAC method as long as the granularity of the parallel application is not too small.

The communication timings indicate that a complex practical calculation, such as the
accurate solution of the Navier–Stokes equations for the study of Marangoni flow instability,
can be expected to run on a massively parallel machine with good efficiency.

Future studies will be dedicated to the assessment of two-dimensional (and eventually
three-dimensional) partitions for the problem under consideration and to the analysis of the
Marangoni flow instability for high Prandtl liquids.
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